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Abstract
Advances in experimental methodology and analysis implemented in the
precision measurement of the Casimir force with semiconductor surfaces are
discussed. An experiment for the alteration of the Casimir force through a
modification of the free carrier density in semiconductors is presented.

PACS numbers: 12.20.Fv, 12.20.Ds, 68.37.Ps

1. Introduction

The Casimir effect [1–6], in general, has recently gained a lot of prominence due to its
importance in many subfields in fundamental and applied physics. As Casimir forces
dominate material interactions at micron and submicron distance scales, precision experimental
measurements of the Casimir force have become increasingly important. From a theoretical
point of view, modern unification [7–13] theories require the presence of compactified extra
spatial dimensions greater than three and this has motivated experimental searches for new
forces at very short distance scales. From the point of technology, the remarkable development
of micromachines with the modern nanofabrication techniques has added another urgent
dimension to the study of Casimir forces. These microelectromechanical devices have
moving parts separated by submicron distances, a region where the Casimir force between the
interacting surfaces is very strong [14, 15].

Recently, we have explored the role of the Casimir force with semiconductor surfaces.
We have performed a precise measurement of the Casimir force between a single crystal
silicon plate and a gold-coated sphere using the AFM [16]. Here we discuss the improvements
in the experiment and data analysis over our previous precision experiments of the Casimir
force using the AFM [17–21]. Next, we also analyse an experiment for the modification
of the Casimir force through a change of the dielectric properties of the boundary. The
dielectric properties of semiconductors can be modified by changing the carrier density
through an absorption of photons. Such an alteration of the dielectric properties will in
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turn modify the Casimir force between the semiconductor surface and the gold-coated sphere.
The experimental details about the required parameters for the observation of the force are
reviewed. These experiments are also important from a technological point of view, given that
semiconductor materials such as silicon are central to the fabrication of micromachines.

Precision experimental measurement of the Casimir force has seen rapid developments in
the last few years. Historically, the first experimental tests of the Casimir force were carried
out by Sparnaay [22, 23] using a spring balance. A more unambiguous detection of the Casimir
force was performed by Overbeek and von Blockland [24]. These early experiments realized
that metallic or highly conductive boundaries are essential for controlling the systematic errors
from residual electrostatic charges and work function differences [22–24]. We should note
that an early attempt to measure the Casimir force in semiconductor surfaces and modify them
with light was reported in [25]. Attractive forces were measured between a glass lens and a Si
plate and also between the glass lens coated with a 2 mm diameter of amorphous Si and the
Si plate. However, the glass lens is an insulator and therefore the electrical forces, such as,
due to work function potential differences could not be controlled. This might also explain
that no force change occurred on illumination for small separations below 350 nm [25] where
it should have been most pronounced, given the approximate inverse third power distance
dependence of the Casimir force for this geometry. A more detailed review of the historical
experiments is given in [6].

More recently, the first modern experimental test of the Casimir force was performed
by Lamoureaux [26] using the torsion balance. Subsequently, we have reported precision
measurements of the Casimir force using the AFM [17–21]. In this paper, we will not
review our earlier experiments with metallic surfaces. We will also not discuss our previous
experiments demonstrating the lateral Casimir force using corrugated surfaces [27, 28], which
was first theoretically predicted by Golestanian and Kardar [29]. Our present efforts in this
direction involve experiments to check for nonlinearities in the lateral Casimir force resulting
from diffraction-like effects from the use of the corrugated boundaries [30]. In terms of an
overview we should note that an improved Casimir force measurement with parallel metal
plates has recently been reported [31]. We should also note that the role of Casimir forces
in microelectromechanical (MEM) machines, was directly demonstrated by Capasso et al
[32, 33], where the Casimir force itself was used to actuate a MEMs device. In turn the MEMs
device has been used in precise measurements of the Casimir force [34]. More developments
in both these groups are presented elsewhere in this issue.

In section 2, a brief overview of the theoretical factors necessary for the calculation of the
Casimir force is provided. In section 3, the precision experimental measurement of the normal
Casimir force with the semiconductor test body is reported. In section 4, the experiment to
modulate the Casimir force through an alteration of the carrier density in semiconductors is
discussed. Section 5 is the conclusion.

2. Theoretical calculation of the normal Casimir force between a gold surface and
silicon surface

To measure the Casimir force between two surfaces, the preference is to replace one of the
plates by a metal sphere of radius R. The use of a large sphere instead of a plate avoids any
problems associated with the parallel alignment of the two plates. If the boundaries of the
large sphere and the plate have infinite conductivity (perfect or ideal metals), and their surfaces
are separated by z, the Casimir force between them is [35] given by

F 0
c (z) = −π3

360
R

h̄c

z3
. (1)
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In the above, the proximity force approximation [35–37] has been used to generalize the results
of the Casimir force between two parallel plates to the case of the Casimir force between a
large sphere and a plate. The errors introduced by the use of this approximation have been
recognized to be much less than 1% [36]. In reality, one does not have access to perfect metals
and the exact material properties of the boundaries used have to be taken into account [38, 39].
For two dissimilar materials such as the gold-coated sphere and silicon plate as used here, it
is given by

Fc(z) = Rh̄

2π

∫ ∞

0
k⊥ dk⊥

∫ ∞

0
dξ

{
ln

[
1 − r

(1)
‖ r

(2)
‖ e−2qz

]
+ ln

[
1 − r

(1)
⊥ r

(2)
⊥ e−2qz

]}
. (2)

The reflection coefficients for two independent polarizations are given by

r
(p)

‖ = ε(p)(iξ)q − k(p)

ε(p)(iξ)q + k(p)
, r

(p)

⊥ = k(p) − q

k(p) + q
,

where q2 ≡ k2
⊥ + ξ 2/c2, k(p)2 ≡ k2

⊥ + ε(p)(iξ)ξ 2/c2 and ε(p)(ω) is the dielectric permittivity
of gold (p = 1) and silicon (p = 2). ε(1)(iξ) was found by means of the dispersion relation
from the imaginary part of ε(1)(ω) obtained using the complex refractive index from tables
[40]. The same procedure was used for single crystal Si. Since the optical properties of the
Si at low frequencies depend on the concentration of charge carriers, the tabulated data in
[40], obtained for a sample of high resistivity ρ0 = 1000 � cm, should be adapted for the
silicon plate used in the experiment with a resistivity ρ0 = 0.0035 � cm. This is achieved
[40] by adding the imaginary part of the Drude dielectric function to the imaginary part of
the dielectric permittivity obtained using the data from tables. The plasma frequency at this
resistivity was found to be 7 × 1014 rad s−1, and relaxation parameter γ = 1.5 × 1014 s−1

[40]. It should be noted, that because of the small value of the plasma frequency compared
to the characteristic frequency c/2z, where z is the separation distance, even a 50% change in
the plasma frequency of Si leads to a less than 1% change in Casimir force magnitudes within
the entire separation region presented here [16].

In addition to the corrections due to the dielectric properties, there are also corrections
resulting from the roughness [16–21, 34, 41, 42]. The roughness of the surfaces used in the
experiment stochastically alters the separation distance between the surfaces. The roughness
correction can be made negligible by using smooth metal coatings. One of the advantages of
using a single crystal silicon surface is that the roughness correction is drastically minimized
when compared to the metal plate. In the experiments discussed here the roughness amplitude
was decreased and the roughness contribution was made much less than 1% of the measured
force even at the shortest separations. In earlier work [17–20], the roughness corrections were
evaluated using a simple stochastic model for the surface roughness and the multiplicative
approach was used to take into account the different corrections. In these experiments, we
obtain more exact results for the contribution of surface roughness to the Casimir force using
a nonmultiplicative approach. Diffraction and other correlation-type contributions [42] to the
roughness correction were found to be negligible. Details on the application of the roughness
correction are given in section 3.4.

In precision Casimir force measurements done at non-zero temperature, one has to also
account for the role of thermal photons [43, 44]. At present, there are many different models
for calculating the thermal correction to the Casimir force in the presence of real material
boundaries [45–50]. However, in all the AFM-based experiments, the thermal corrections
using any of the above models are much less than 1%. Thus, for the AFM-based experiments
reported to date, the role of the thermal corrections can be neglected and the zero-temperature
Casimir force as in equation (2) can be used.
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z
 Silicon Plate

Figure 1. Schematic diagram of the experimental setup. Application of voltage to the piezo results
in the movement of plate towards the sphere.

3. Experimental measurement of the normal Casimir force between a gold
surface and silicon surface

We have adapted a contact mode AFM (shown in figure 1) to measure the Casimir force
between a gold-coated sphere and single crystal silicon plate at pressures below 2 × 10−7 Torr.
The force detection scheme in the AFM is based on a less than 1 µm thick cantilever beam.
The ultra-thin cantilever beam flexes in response to a force on the sphere. A laser beam is
reflected off the cantilever end to measure its deflection, leading to a difference signal between
photodiodes A and B (shown in figure 4). This cantilever deflection signal is calibrated by
electrostatic means and the procedure is described below. To prepare the cantilever, polystyrene
spheres were mounted on the tip of 320 µm long cantilevers. The sphere is coated with 105 nm
of gold. The diameter of the sphere was measured using a scanning electron microscope
to be 202.6 ± 0.3 µm. A specially prepared single crystal silicon 〈1 0 0〉 is used as the
plate. The resistivity data provided by the crystal grower were specified to be in the range
(0.01–0.001) � cm. Using the four-probe technique we measured its precise resistivity to be
ρ = 0.0035 � cm. As discussed in the introduction, the Si surface is strongly susceptible to
oxidation, which will result in large electrostatic forces. This requires that the Si surface has
to be carefully prepared to prevent the growth of the oxide. This was accomplished through
a special passivation procedure. First nanostrip (a combination of H2O2 and H2SO4) is used
to clean the surface of organics and other contaminants. This cleaning procedure oxidizes
the surface. Next a 49% HF solution is used to etch the SiO2. This procedure also leads
to hydrogen termination of the surface silicon atoms [51, 52]. This hydrogen termination
prevents the re-oxidation of the silicon surface as long as the silicon is kept in a high vacuum
environment. The passivation is stable for more than 2 weeks under the 2 × 10−7 Torr
pressure used in this experiment [51, 52]. In addition the vacuum system is oil free to prevent
the presence of organic contaminants. We have checked the effectiveness of the passivation
technique to prevent the contamination of the Si surface through the measurement of the
distance dependence of the electrostatic force resulting from the residual potential difference
between the interacting surfaces.

Care was taken to make ohmic electrical contacts to the silicon plate. Direct contact to
the Si plate leads to large residual potentials. The electrical contact to the Si plate was made
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from a 100 nm thick gold pad made on the silicon. The gold pad was made on the bottom of
the Si plate.

In these experiments, a piezo capable of extending to a length greater than 6 µm was
used. Such large piezo extensions were found necessary to allow time for the decay of noise
associated with the separation of the gold sphere and plate after contact of the two surfaces.
The complete movement of the piezo (zpiezo) was calibrated using a fibre optic interferometer
[53]. To extend and contract the piezo, continuous triangular voltages at 0.02 Hz are applied to
the piezo. Given that the experiment is done at room temperature, applying of static voltages
will lead to piezo creep and loss of position sensitivity. The extension and contraction of the
piezo were fit to terms up to fourth order in the applied voltage.

3.1. Calibration, measurement of the residual electrostatic force and the deflection coefficient

The general experimental technique is similar to what we have used in our previous work. Many
improvements have been applied to this technique in our recent measurements. All calibration
and other measurements are done at the same time as the Casimir force measurement in the
same high vacuum apparatus. The calibration of the deflection signal of the cantilever (Sdef)

and the residual potential difference between the gold-coated sphere and silicon plate is done
by measuring the distance dependence of an applied electrostatic force. In addition, a small
correction has to be applied to the separation distance between the gold sphere and the Si plate
due to the movement of the cantilever. The actual separation distance z between the bottom
of the gold sphere and the Si plate is given by

z = zpiezo + Sdefm + z0. (3)

Here, zpiezo is the distance moved by the piezo, Sdef is the cantilever deflection signal from
the photodiodes (it has negative values for attractive forces), m is the deflection coefficient
in units of nm per unit deflection signal and z0 is the average separation on contact of the
gold surface and the Si plate. It is non-zero due to the stochastic roughness of the surfaces
and its determination is described in a later section. The deflection coefficient m can also be
measured by the application of electrostatic forces between the gold sphere and Si plate [20].

In our measurements here, the gold sphere was kept grounded. The electrical contact to
the gold sphere was accomplished by applying a very thin gold coating to the cantilever. The
electrostatic force between the gold sphere and the silicon plate is given by [54]

Felec = 2πε0(V1 − V0)
2

∞∑
n=1

csch nα(coth α − n coth nα). (4)

Here ‘V1’ is the voltage applied to the silicon plate and ‘V0’ is the residual potential difference
between the grounded gold sphere and silicon plate. The quantity α = cosh−1

(
1 + z

R

)
,

where R is the radius of the sphere, z is distance between the surfaces. As equation (4) is
cumbersome to perform fitting of experimental data to the theory, in our recent experiments,
a perturbative version of equation (4) is used, where the electrostatic force is given by

Felec = −2πε0(V1 − V0)
2

7∑
m=0

Amtm−1, (5)

where t = (
z
R

)
and the coefficients A0 through A7 are given by 0.5, −1.182 60, 22.2375,

−571.366, 9592.45, −90 200.5, 38 3084, −30 0357 respectively. This expansion when
compared to the complete equation (4) has a relative error of 4.7 × 10−5 and 1.5 × 10−5

at separation distances of 1.5 µm and 5.0 µm respectively.
First, different dc voltages between +0.2 and −0.4 V are applied to the plate. The

cantilever deflection signal is measured as a function of the distance. The 0.02 Hz triangular
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Figure 2. The deflection signal of the cantilever in response to the dc voltage and two square
voltage pulses applied to the Si plate as a function of distance. This improved calibration method
avoids the need for background subtraction.

wave was applied to the piezo to change the distance between the sphere and the plate. This
electric force measurement at each voltage was repeated five times and the average electric
force curve was used. Larger applied voltages will lead to more cantilever deflection and
therefore earlier contact of the two surfaces. The change in the contact position of the sphere
and the plate as a function of the applied voltage can then be used to measure deflection
coefficient m [20]. In order to determine the contact of the two surfaces precisely, 32 768
data points at equal time intervals were acquired for each force measurement. In cases, where
the contact point was between two neighbouring data points a linear interpolation was used
to identify the exact value. The deflection coefficient was found to be m = 43.3 ± 0.3 nm
per unit deflection signal. This value of m as shown in equation (3) was used to correct the
separation distance in all measurements.

For the calibration of the deflection signal and the determination of the residual potential
between the two surfaces, an improved method, rather than a simple application of a dc voltage
to the plate was used here. This was done to avoid systematic errors due to scattered laser
light. In addition to the application of the dc voltage to the Si plate described previously,
a square voltage pulse of amplitude +0.4 V and time interval corresponding to a separation
distance between 1 and 5 µm was also applied to the plate. Figure 2 shows the deflection
signal of the cantilever in response to both the applied dc voltage and the square pulse as
a function of the separation distance between the gold sphere and Si plate. By measuring
only the difference in signal during the pulse allows one to avoid the need for a background
subtraction. Also the large width of the pulse allowed checks for the distance dependence
of the residual potential and any position dependence in the calibration. Equation (5) is
used to fit the difference signal and the residual potential difference was measured to be
V0 = −0.114 ± 0.002 V. The calibration of the cantilever deflection signal was also done
by fitting the difference signal on application of the voltage pulse to equation (5). Note that
for the high conductivity Si plate used, the width of the space charge region is negligible for
the voltages and separation distances considered here. The signal calibration constant was
determined to be 1.440 ± 0.007 nN per unit cantilever deflection signal.
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3.2. Experimental measurement of the Casimir force

Next the experimental measurement of the Casimir force between the sphere and the plate as
a function of the separation distance is performed. The gold sphere is kept grounded while
a compensating voltage corresponding to V0 is applied to the plate to cancel the residual
electrostatic force. The distance between the plate and the sphere is varied again by applying
continuous triangular voltages at 0.02 Hz to the piezo. The force data F expt(z) were collected
at 32 768 equal time intervals as the distance between the sphere and plate was changed.
This measurement was repeated 65 times. Even with such closely spaced data points special
precautions have to be observed during the averaging of the 65 measurements.

A great advantage of the AFM technique in the averaging is that the contact point between
the two surfaces z0 provides a starting point for alignment of all the 65 measurements.
Nevertheless, thermal noise in cantilever deflection signal, Sdef , leads to noise in the
corresponding separations z because of the deflection correction applied in equation (3).
To account for this in the averaging, the separation distance is divided into a grid of 32 768
equidistant points separated by 0.17 nm. For each measured Casimir force–distance curve, the
value of the force at the grid point is computed using linear interpolation of the neighbouring
two data points. Because the separation distance between neighbouring points is as small as
0.17 nm, higher order interpolation procedures were not required. This was confirmed by a
statistical check of the data as described in another paper in this proceedings issue. Also the
noise spectrum and amplitude of the interpolated data were confirmed to be the same as the
raw data. This allowed the averaging of the 65 Casimir force measurements even including
the effect of the change in the separation distance due to the thermal noise of cantilever. Data
for separations below 62.33 nm up to contact are not presented as nonlinearities associated
with the ‘jump to contact’ introduce uncontrollable errors into the force measurement.

3.3. Determination of the separation distance on contact

The separation distance on contact of the two surfaces z0 needs to be independently determined
for a comparison of the measured Casimir force to the theory. The electrostatic force curves
measured with the application of dc voltages used in the determination of the deflection
coefficient m were used to determine z0. In difference from our earlier work, here we
attempted to reduce the role of uncertainties in the determination of V0 in the determination
of z0. This procedure also allows an independent check of the distance dependence of V0 (this
is important given the semiconductor surfaces are susceptible to accumulation of charges and
defects). To accomplish this, the electrostatic force between the sphere and plate shown in
equation (5) is rewritten as

Felec = Celect(z)(V1 − V0)
2 (6)

and

Celec = −2πε0

7∑
m=0

Amtm−1. (7)

The parabolic dependence of the electric force on the applied voltage V1 and the residual
potential V0 can be used to make a second independent determination of V0 [24, 55]. The
signal deflection is first measured for many dc voltages applied to the Si plate as described
previously in section 3.1. The experimentally measured average Casimir force deflection
signal (before conversion to force) measured in the last section is subtracted from the total to
yield only the signal due to the electrostatic force. For a given distance z, the electric force
is plotted as a function of applied voltage V1 to the plate. The resulting parabolas are fit to
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Figure 3. The average measured Casimir force (open squares) is plotted as a function of the
separation distance. The solid line represents the theory.

provide a value for the V0 and Celec(z). This is repeated for many different z. The V0 was
found to be same as that determined earlier and to be independent of separation distance.
Note that this measurement is also independent of errors in the cantilever calibration. In order
to determine z0, the Celec(z) are then plotted as a function of z and fit to equation (7). The
value of z0 so determined was 32.1 ± 0.8 nm. The uncertainty in z0 includes the error in
the deflection coefficient m and the calibration. It should be noted that this uncertainty is at
the contact position and is not the uncertainty between data points. With this average separation
distance on contact z0, the separation distances between the gold sphere and silicon plate are
completely determined. Note that this value of z0 can be used iteratively to reduce the
uncertainty in the calibration of the cantilever deflection.

3.4. Comparison of the experimental Casimir force to theory

At this point all the experimental parameters are determined and a comparison of the
experiment to the theory can be attempted. The measured Casimir force between the gold
sphere and the silicon plate in the distance range from 62.33 to 425 nm is shown as open
squares in figure 3. For the purpose of clarity only every tenth data point is displayed in the
figure.

For a comparison of the theoretical results with the experiment, we should take into
account the surface roughness corrections. In order to do this the topography of the gold
coating on the sphere and the silicon plate was measured using the AFM. The roughness
was found to be stochastically distributed distortions with typical heights of 11–20 nm on the
sphere and 0.3–0.6 nm on the silicon plate. There are also rare point-like peaks on the sphere
with heights up to 25 nm. If v

p

k represents the fraction of the surface area with roughness
height h

p

k (p = 1 for the gold sphere and p = 2 for the plate), one can find the zero roughness
levels H 1

0 = 15.35 nm and H 2
0 = 0.545 nm. Using the additive approach, the theoretical

Casimir force, including both finite conductivity and surface roughness corrections, can be
calculated as [21]

F theor(z) =
∑
k,j

v1
kv

2
jFc(z̄), (8)

where z̄ = z + H 1
0 + H 2

0 − h1
k − h2

j and Fc(z) is given by equation (2). The theoretical Casimir
force is shown as a solid line in figure 3.
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Figure 4. The solid line represents the error bars at 95% confidence level and the open squares
represent the difference force between the experimental data point and the theory. The error bars
are overestimated as much less than 5% of the data fall outside the error bars.

The statistical error analysis in the experiment and theory is discussed in detail in an
accompanying article in this issue. The random errors in the experiment can be determined
using the Student’s t distribution tables with the number of degrees of freedom f = n−1 = 64
and choosing the 95% confidence level. The random noise in the experimental data represented
by the variance is 1.5 pN. For a 95% confidence level this leads to a random error of
3.0 pN. The systematic errors in the experiment are due to the force calibration, instrumental
sensitivity, computer resolution and instrumental resolution and lead to a total of 1.17 pN at
the 95% confidence level. The theoretical force curves include errors due to use of proximity
force theorem, and sample to sample variations in the optical data. Additional errors in the
determination of the theory come from the uncertainty in the determination of the sphere
radius and the separation distance on contact of the sphere and plate. In figure 4, the open
squares represent the difference between the experimental data point and the theoretical force
as a function of distance. The solid lines represent the total errors as a function of distance at
the 95% confidence level. It can be seen that the error bars are slightly overestimated as much
less than required 5% of the data points fall outside the error bars. If one takes the ratio of the
error bars to the theoretical force value as a measure of the precision, then it is 3.8% within
the separation region between 75.8 and 81.5 nm. It should be noted, however, that the actual
difference between the theoretical and experimental force values is less than 1% of the force
magnitude between separations of 62.33 to 69.98 nm.

4. Modulation of the Casimir force with plate conductivity

Here we discuss our experimental proposal to demonstrate the modulation of the Casimir
force through a change in the conductivity. As can be realized from a study of equation (2), a
change in the conductivity of the boundaries will lead to the modification of the Casimir force.
The simplest method of altering the conductivity is by changing the free carrier density of the
semiconductor boundary. This can be accomplished in two ways, either through a change in
the temperature or by the excitation of free carriers through the absorption of photons. While
changing the temperature to modify the boundary conductivity is a good method in theory, the
temperature modification leads to large systematic errors in the measurement setup [56].
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Figure 5. Experimental setup used for the modulation of the Casimir force through excitation of
carriers in the semiconductor membrane shown.

The excited free carrier density has to be modified by greater than 1018 cm−3 in order
to result in a fraction of a per cent change in the Casimir force for separation distances of
order 100 nm. To accomplish such large changes in the free carrier density, specially designed
silicon plates are needed. The effective volume of the silicon has to be kept very small to
achieve the large free carrier densities. Thus fabrication of special silicon membranes is
necessary. For carrier excitation, at equilibrium, the amount of optical power (P) required is
given by:

P = h̄ωN

τ
, (9)

where ω is the frequency of the light, N is the number of excited electrons and τ is the excited
carrier lifetime. Si is an ideal material as its excited carrier lifetime is rather long around
τ = 1 ms (due to its indirect bandgap). However, this lifetime can be achieved only far
from surfaces or other boundaries particularly those not containing impurities. In the case of
passivated silicon membranes, carrier lifetimes of order τ > 10−6 s are achievable [57]. For
membranes of 2 µm thickness, and a 514 nm laser light beam focused on a 100 µm diameter
spot, modest light powers of 6 mW can lead to excited carrier densities of 1018 cm−3.

The illumination of the silicon has to be done such that very little if any of the light
impinges on the sphere, as this would lead to light-induced forces on the sphere. If the silicon
is illuminated from the bottom, care should be taken that the fraction of light transmitted
through the membrane leads to negligible amount of photon pressure on the sphere. Thus the
thickness of the membrane has to be greater than the 1 µm optical absorption depth of silicon.
Fabrication of a few micron thick silicon membrane is necessary to accomplish the necessary
experimental conditions for the observation of the modulation of the Casimir force.

The experimental setup to be used for the measurement of the carrier-induced modulation
of the Casimir force is shown in figure 5. The passivated silicon substrate containing the
silicon membrane is replaced with the silicon plate shown in figure 1.

The same oil-free vacuum with a pressure of around 2 × 10−7 Torr is used. 10 mW of
514 nm light from an Argon laser will be focused on a 100 µm diameter spot on the bottom
surface of the membrane. The light will be modulated at a frequency of 100 Hz (5 ms wide
light pulses) using an acousto-optic modulator (AOM). The AOM is triggered with a function
generator which is used as a reference for the lockin amplifier. The lockin amplifier measures
the amplitude of the modulation of the Casimir force in response to the carriers excited by the
light pulse. The calibration of the cantilever and the measurement of the residual potential
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differences will be performed in a manner similar to that discussed in sections 3.1 and 3.2.
A dc voltage of V0 will be applied to the silicon membrane to compensate for the contact
potential differences. With the excitation of the carriers however, the contact potential is
modified. Thus additional voltage compensation V ′

0 is necessary in the presence of the excited
carriers. So an additional square voltage pulse should be applied synchronous with the laser
pulse. The amplitude of modulation of the Casimir force will be measured by the lockin
amplifier.

5. Conclusions

Our recent precision measurements of the Casimir force have concerned interactions between
semiconductor and metal surfaces. A precision Casimir force measurement between a gold
sphere and Si plate was discussed in detail. Many improved experimental and analysis
techniques were implemented such as higher vacuum, oil-free vacuum, single crystal Si plate,
more precise measurement of the separation distance, improved calibration and measurement
of residual potential differences and a rigorous statistical analysis of the data. In the present
analysis at the 95% confidence level, the smallest ratio of the error bar to the force is 3.8%
in the separation distance range between 75.8 and 81.5 nm. It should also be noted that the
actual difference between the theoretical and experimental force values is less than 1% of the
force magnitude within the separation region from 62.33 to 69.98. An experiment to measure
the modulation of the Casimir force by exciting carriers in the silicon membrane was also
presented.
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